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Abstract

We continue the investigation towards a logic-based approach to statistics within
the infinitary conservative extension of  Lukasiewicz logic IRL and prove ver-
sions of de Finetti’s theorems on coherence and exchangeability. In particular
we will prove a coherence criterion for a subclass of the variety of σ-complete
Riesz MV-algebras in the conditional and unconditional case, and discuss de
Finetti’s exchangeability in a special case.
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1. Introduction

Probability theory and fuzzy logic are both theories used when one aims at
performing some sort of inference in uncertain or imprecise situations. These
two theories have been combined in many different ways and for the purpose of
this paper we only recall [4], where the authors define the algebraic counterpart
of a random variable within a conservative expansion of  Lukasiewicz logic. The
probabilistic setting used there is the one of subjective probability, as introduced
by Bruno de Finetti.

Starting from the Thirties, Bruno de Finetti layed the ground for the de-
velopment of subjective probability (also called Bayesian) in form of a betting
game: In his setting, the probability of an event is the amount that a rational
agent is willing to bet on it. de Finetti also proved that this point of view on
probability is consistent with the widely used axiomatic approach. Indeed, it is
possible to define a notion of coherence for the choices of the bets on the events
and to prove that a book is coherent if, and only if, it can be extended to a
probability measure on the Boolean algebra generated by the events. Coherence
is therefore a bridge between subjective and objective, axiomatic, probability.

Another point of view on probability theory is the so-called frequentist ap-
proach. In this case, the probability of an event is defined by the frequency of
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that event based on previous observations. In this setting, it is common to define
a statistical model that fits the observed data, and to derive the properties of
the hidden probability distribution in this way. Perhaps surprisingly, subjective
probability is again related to frequentist probability via de Finetti’s work, and
in particular via the notion of exchangeability that, loosely speaking, shows how
statistical models appear in a Bayesian framework, and how probabilities can
come from statistics, see [11, Chapter 5]. Formally, the exchangeability of a se-
quence of random variables means that the joint distribution of any of its finite
subsequences is independent of any permutation of the order, see Section 2.3.

In this work, we want to continue the research project started in [4, 16],
whose long-term goal is to provide a metamathematics of statistics, meant as
a logic-based approach to the subject. To move towards this objective, it is
necessary to enlighten the most suitable logical system in which one can work,
and for us this is a system based on  Lukasiewicz logic, since it has already be
proven to be adequate to reason about subjective probability. Indeed, as one can
appreciate in [8, 21],  Lukasiewicz logic (via its algebraic semantics, the variety
of MV-algebras) allows to codify probability measures in algebraic terms, using
the notion of a state, see Section 2.3 for further details. Furthermore, such
a logical system models the fundamental operations that one need to discuss
probability: a sum and a complement to 1.

In particular, among all the possible expansions of  Lukasiewicz logic, we
shall work in the system defined in [6] which is an infinitary logic that allows
to further model a scalar multiplication by real numbers as well as countable
suprema. These are indeed natural operations to consider when it comes to rea-
son about probability, for example, by taking convex combinations or discussing
the probability of an increasing sequence of events. More formally, we will work
in the logical system IRL, that contains one operation of countable arity but it
turned out to be extremely well-behaved. Indeed, it is a conservative extension
of  Lukasiewicz logic and its algebraic semantics is given by a special subclass
of MV-algebras, namely the class of σ-complete Riesz MV-algebras, that were
proved to be an infinitary variety in [6]. Moreover, IRL is standard complete:
a formula of IRL is true in any σ-complete Riesz MV-algebra if, and only if, it
is true in [0, 1].

To continue our investigation towards a metamathematics of statistics within
the system IRL, de Finetti’s theorems on coherence and exchangeability are
crucial. Thus, in this note we will prove a coherence criterion for a subclass
of the variety of σ-complete Riesz MV-algebras and discuss exchangeability
in a special case. In particular, in Section 3 we discuss the structure of the
spaces of [0, 1]-valued σ-homomorphisms and states of a σ-complete Riesz MV-
algebra. In Section 4 we prove a suitable version of the coherence criterion, with
a proof strategy that is different from the one usually given for MV-algebras,
which couldn’t been applied directly in this case. The coherence criterion is
also discussed in the case of conditional events. Finally, in Section 5, we discuss
exchangeability of a sequence of boolean observables via Hausdorff’s moment
problem. Here, by “observable” is meant the generalization of the notion of
random variable given in [4], see Section 2.3 for further details.
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2. Preliminaries

2.1. σ-complete Riesz MV-algebras

In this paper we will deal with σ-complete Riesz MV-algebras. These are
algebras that model an infinitary and conservative extension of  Lukasiewicz
logic, called Infinitary Riesz Logic and denoted by IRL, and can be thought of
as unit intervals of Dedekind σ-complete vector lattices with strong unit. The
logic IRL has been defined in [6] and σ-complete Riesz MV-algebras have been
investigated as an infinitary class of algebras in [6, 5].

More precisely, a σ-complete Riesz MV-algebra is an algebra(
A,⊕,¬, 0, 1, {α}α∈[0,1],

∨)
,

where ⊕ is a binary operation, ¬ is an involution, 0 and 1 are respectively
a bottom and a top element, the unary operations {α}α∈[0,1] model a scalar
multiplication, and the infinitary operation

∨
models a countable disjunction.

An additional operation can be defined as follows: x � y := ¬(¬a ⊕ ¬y). This
definition is willingly imprecise, since we shall soon restrict our attention on a
special subclass of these algebras.

The standard example of such an algebra is the real interval [0, 1], where
x⊕y = min(x+y, 1), ¬x = 1−x, αx is the product of real numbers, and

∨
n xn

is the supremum in [0, 1]. This example is standard in a very precise sense:
σ-complete Riesz MV-algebras form an infinitary variety (see [24]) and [0, 1] is
a generator for it. This variety will be denoted RMVσ.

For any A ∈ RMVσ, we call σ-ideals the ideals of A that are closed under
countable suprema, while by MV-maximal σ-ideals we mean those σ-ideals of
A that are also maximal ideals for the Riesz MV-reduct of A. The set of all
MV-maximal σ-ideals will be denoted by Mσ(A), or Mσ when A is clear from
the context.

From a different point of view, if (V, u) is a Dedekind σ-complete Riesz space
with a distinguished strong order unit u, the interval [0, u]V = {x ∈ V | 0 ≤
x ≤ u} is a σ-complete Riesz MV-algebra when endowed with the following
operations: x ⊕ y = (x +V y) ∧ u, ¬x = u −V x, αx and

∨
n xn the same as in

V . The map that takes (V, u) and sends it into [0, u]V is actually a functor, the
so-called Mundici’s functor denoted by Γ, that induces a categorical equivalence.

2.2. Free objects and σ-semisimple algebras

Given a topological space (X, τ), C(X) will denote the set of [0, 1]-valued
continuous functions defined over X. A zeroset Z ⊆ X is a set for which
there exists f ∈ C(X) such that Z = {x ∈ X | f(x) = 0}. A cozero set is
a complement of a zeroset, that is a set A for which there exists a continuous
function f such that A = {x ∈ X | f(x) 6= 0}.

A Baire set is a subset of X belonging to the σ-algebra generated by the
zerosets of functions in C(X), while a Borel set is a subset of X belonging to
the σ-algebra generated by the closed sets (equivalently, by cozero subsets and
open subsets respectively). We shall denote the σ-algebras of Baire and Borel
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subsets of X respectively by BA(X) and BO(X). Whence, a Baire function
is a function f : X → [0, 1] measurable with respect to the spaces (X,BA(X)),
([0, 1],BA([0, 1])). Borel functions are analogously defined. Note that BA(X) ⊆
BO(X), while the converse inclusion holds for a metrizable space, see [5, Remark
2.1]. In particular, BO([0, 1]κ) = BA([0, 1]κ) for κ ≤ ω, and [0, 1]κ is endowed
with the standard Euclidean topology.

It is known that the sets of [0, 1]-valued Baire and Borel functions defined
over some hypercube [0, 1]κ are σ-complete Riesz MV-algebras, and they shall
be denoted respectively by Baire([0, 1]κ) and Borel([0, 1]κ). We also recall that
in both algebras countable suprema are taken pointwise.

In [5], it was proved that the free κ-generated algebra in RMVσ coincides
with the algebra Baire([0, 1]κ), which coincide with Borel([0, 1]κ) when κ is
countable. To give more uniform notations, in this work we follow [5] and there-
fore IRL(κ) will denote the free κ-generated algebra, where κ is an arbitrary
cardinal. The elements of IRL(κ) will be called IRL-polynomials.

If I, S and P denote the standard universal-algebraic operators in RMVσ,
algebras that belong to SP ([0, 1]) will be called Riesz tribes (or simply tribes),
while algebras in ISP ([0, 1]) have been characterized in [5] as follows.

Theorem 2.1. Let A ∈ RMVσ. The following are equivalent:

(i) A ∈ ISP ([0, 1]).

(ii) The intersection of all MV-maximal σ-ideals of A is trivial, in symbols⋂
{M |M ∈Mσ(A)} = {0}.

(iii) There exist a cardinal κ and a set V , that is an arbitrary intersection of el-
ements of BA([0, 1]κ), such that A ' IRL(κ)|V , the algebra of restrictions
to V of elements of IRL(κ).

We call σ-semisimple any algebra that satisfies one of the equivalent condi-
tion of Theorem 2.1. They will be the protagonists of this paper. Moreover, an
IRL-algebraic variety is any arbitrary intersection of elements of BA([0, 1]κ).

Note that, if A ' IRL(κ)|V , by [16, Lemma 4.6] it follows that A is the
algebra of all BA(V )-measurable functions, where BA(V ) = {A ∩ V | A ∈
BA([0, 1]κ)}. We also note that by the same lemma BA(V ) = {B ⊆ V | χB ∈
IRL(κ)|V }.

Furthermore, we will use the following operators. For any subset S ⊆ [0, 1]κ,

I(S) = {p ∈ IRL(κ) | p(x) = 0 for any x ∈ S}.

Given a set J of IRL-polynomials,

V(J) = {x ∈ [0, 1]κ | p(x) = 0 for any p ∈ J} =
⋂
p∈J

V({p}).

These operators induce a categorical duality between σ-semisimple algebras
and IRL-algebraic varieties, see [5, Section 4] and with this notations, if A '
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IRL(κ)/J is a presentation of the algebra A, then A ' IRL(κ)|V(J).

Finally, we consider the topology ZIRL on [0, 1]κ that is generated by ele-
ments of BA([0, 1]κ) taking them as closed subsets, rather than using the more
familiar open-convention. Thus, a closed in ([0, 1]κ,ZIRL) is an arbitrary in-
tersection of Baire sets, and Baire sets are clopens in ZIRL. With the previous
notations, it holds that V is closed in ZIRL if, and only if, V =

⋂
p∈F V(p),

where F ⊆ IRL(κ) is an arbitrary set.
This topology is the one given in [5, Section 5] where it is also proved that

it is not always compact. We also remark that, in the case of ([0, 1],ZIRL)
the topology is generated by BA([0, 1]) = BO([0, 1]), which is the σ-algebra
generated by intervals of type [0, r) or (s, 1].

2.3. States and subjective probability

Probability measures are encoded in  Lukasiewicz logic via the notion of a
state, introduced by D. Mundici with the idea of obtaining an averaging process
for formulas.

To define this notion properly, we recall that any MV-algebra A can be
endowed with a partial operation, that we shall denote by +, defined when
x� y = 0, for x, y ∈ A. In this case x+ y = x⊕ y. Equivalently, if A = Γ(G, u)
via Mundici’s functor, the partial sum x+ y is defined when x+ y ≤ u in G.

Formally, a state of a σ-complete Riesz MV-algebra A is a map s : A→ [0, 1]
satisfying the following conditions:

(1) s(1) = 1,

(2) for all x, y ∈ A such that x� y = 0, s(x⊕ y) = s(x) + s(y).

A σ-state is a state that, in addition, preserves countable suprema of increasing
sequences, that is,

(3) If {an}n∈N is an increasing sequence of elements of A, then s(
∨
n an) =∨

n s(an).

Following [8] we denote by S(A) the set of states of any MV-algebra A.
It is known, see [8, Theorem 4.1.1] that S(A) = co(Hom(A, [0, 1])), where
Hom(A, [0, 1]) = {h : A → [0, 1] | h is a homomorphism} and co denotes the
topological closure (in the product topology of the euclidean space) of the con-
vex hull of Hom(A, [0, 1]). Thus, any state is either a homomorphism, a convex
combination of homomorphisms, a limit of a net of convex combinations. We
will use the same notation for σ-complete Riesz MV-algebras, while Sσ(A) will
denote the set of σ-states of A.

In the case of tribes, we can obtain an integral representation for σ-states,
which was firstly proved by Butnariu and Klement, see [1, Chapter II, Section
6].
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Theorem 2.2. For every Riesz tribe T ⊆ [0, 1]X , for every σ-state s of T , for
every f ∈ T ,

s(f) =

∫
X

f dµs.

The measure µs : S(T ) → [0, 1] is given by µ(A) = s(χA) and S(T ) = {A ⊆
X | χA ∈ T }.

Note that a more general version of Theorem 2.2 is the so-called Kroupa-
Panti theorem, see [8, Theorem 4.0.1] for a precise statement.

If T is a Riesz tribe, it follows from [21, Lemma 11.8] that T is closed under
the usual product of functions, that is, if f, g ∈ T , then f · g ∈ T . Those MV-
algebras that can be endowed with a ring-like structure are known and studied
in literature under the name of PMV-algebras, see [19]. Thus, a consequence of
these remarks is the fact that any Riesz tribe has a natural structure of PMV-
algebra. We also note that states on a PMV-algebra P are defined as states on
the MV-reduct of P , see [8, Section 7]. Finally, in the sequel we shall use the
fact that for any f, g ∈ T , if 1 is the function identically equal to 1, by [19,
Lemma 2.9], f · g ≤ f · 1 = f and f · g ≤ 1 · g = g. Moreover, we recall that
states are monotone functions: f ≤ g implies s(f) ≤ s(g).

A probability Riesz tribe is a pair (T , s) where T is a Riesz tribe and s is a σ-
state. A κ-dimensional observable is defined as a homomorphism X : IRL(κ)→
T , see [4], and it is essentially the algebraic counterpart of a random variable
on T ⊆ [0, 1]X . Indeed, following [4, 5] to any observable X posed in a Riesz
probability tribe it corresponds a unique random variable f : (X,S(T ), µs) →
([0, 1]κ,BA([0, 1]κ)), with the same notations given before, such that X(a) = a◦f
for any a ∈ IRL(κ).

Finally, κ-dimensional stochastic processes posed in T are defined as se-
quences of κ-dimensional observables {Xn}n∈N with values in the same Riesz
tribe. If T carries a σ-state s and if Xn = − ◦ fn, the process is called
weakly exchangeable if the sequence of classical random variables {fn}n∈N is
exchangeable, see [16]. That is, if for each n ∈ N the joint distribution of
two finite subsets fi1 , . . . , fin and fj1 , . . . , fjn is the same. In symbols, if for
A1, . . . , An ∈ BA([0, 1]κ),

µs (fi1 ∈ A1, . . . , fin ∈ An) = µs (fj1 ∈ A1, . . . , fjn ∈ An) .

Remark 2.3. To avoid any confusion, we shall call σ-homomorphisms the arrows
of RMVσ, while we will use the term homomorphisms for the arrows in the
algebraic category of Riesz MV-algebras, containing RMVσ. We will denote the
sets of σ-homomorphisms and homomorphisms from A to B by Homσ(A,B)
and Hom(A,B) respectively. Moreover, we will call σ-function any function
that preserves the supremum of any increasing sequence.

3. The structure of the spaces of σ-homomorphisms and σ-states

de Finetti coherence criterion has been extended to  Lukasiewicz logic by D.
Mundici, see [8, 21] for an up-to-date formulation of the statement. In these
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references, one key point towards coherence is the characterization of the state-
space of an MV-algebra A as a compact convex subset of [0, 1]A endowed with
the product Euclidean topology. Indeed, this fact allows to use the well-known
Krein-Milman theorem and obtain coherence from the very general proof given
in [15]. In this section we see how the countable operation breaks compactness
of the space of σ-homomorphisms.

Lemma 3.1. Let Form(κ) be the set of formulas in IRL build upon κ propo-
sitional variables, where κ is an arbitrary cardinal. Then:

1. There is a one-one correspondence between evaluations v : Form(κ) →
[0, 1] and σ-homomorphisms of IRL(κ) in [0, 1].

2. There is a one-one correspondence between points of [0, 1]κ and elements
of Homσ(IRL(κ), [0, 1]).

3. There is a homeomorphism between ([0, 1]κ,ZIRL) andMσ(IRL(κ)) en-
dowed with the hull-kernel topology.

Proof. The claims are easily deduced from computation. The correspondences
are given by the following stipulations:

1. Take ϕ ∈ Form(κ) and let p ∈ IRL(κ) be the function that uniquely cor-
responds to ϕ. To each evaluation v we can associate the homomorphism
hv given by hv(p) = v(ϕ), which is well defined by the definition of the
Lindenbaum-Tarski algebra of IRL. Conversely, to each homomorphism
h we associate vh given by vh(ϕ) = h(p). See [3, Lemma 4.5.6] for further
details in the case of  Lukasiewic logic.

2. To each point x ∈ [0, 1]κ we associate the homomorphism hx : IRL(κ)→
[0, 1] given by the evaluation hx(p) = p(x). Conversely, to each homo-
morphism h : IRL(κ) → [0, 1] we associate the point xh = (h(πi)i∈κ).
The correspondence is one-one because the projections πi are generators
for IRL(κ) and each p ∈ IRL(κ) is therefore an IRL-combination of the
projections.

3. It follows from [5, Lemma 4.6] that the function η : [0, 1]κ →Mσ(IRL(κ))
given by x 7→ I(x) is a bijection. The proof that η is a homeomorphism
is standard. Let Fa = {M ∈ Mσ(IRL(κ)) | a ∈ M} be a basic closed in
Mσ(IRL(κ)). To prove that η is continuous, we notice that η−1(Fa) =
V(a), while to prove that it is closed, take any closed in ZIRL, that is,
F =

⋂
a∈I V(a) = V(I). It is easy to see that η(F ) = {M ∈Mσ(IRL(κ)) |

I ⊆ M}, which is a closed set in the hull-kernel topology (relative to σ-
ideals).

It is important to remark that, when dealing with MV-algebras without the
infinitary operation

∨
, Hom(A, [0, 1]) and Max(A) are homeomorphic topolog-

ical spaces, where Max(A) is endowed with the usual hull-kernel topology, while

7



Hom(A, [0, 1]) is endowed with the topology induced by the product Euclidean
topology on [0, 1]A. In this case, one can see that Hom(A, [0, 1]) is closed in
[0, 1]A. This latter fact has an implicit assumption: the  Lukasiewicz operations
are continuous with respect to the euclidean topology, which coincide with the
Zariski topology obtained starting from the free MV-algebra.

In contrast to the previous considerations, the countable disjunction is not
continuous with respect to the Euclidean topology.

Lemma 3.2. All operations of σ-complete Riesz MV-algebra are continuous
with respect to ([0, 1],ZIRL). In particular, the countable operation

∨
: [0, 1]ω →

[0, 1] is not continuous with respect to the product of the euclidean topology, while
it is continuous with respect to ZIRL.

Proof. The operations ⊕, ¬ and the scalar multiplication are continuous with
respect to the Euclidean topology on [0, 1] and its product topology. This means
that any of these operations, let say f ∈ {⊕,¬, α}, is Baire-measurable, see [5,
Remark 2.1]. Thus, for any Baire set B ∈ BA([0, 1]), f−1(B) ∈ BA([0, 1]n), for
the appropriate n = 1, 2. Since Baire sets generate the topology ZIRL on all
[0, 1]n, f is continuous with respect to ZIRL.

For the countable suprema, take [0, r) to be an open set in [0, 1] with the

Euclidean topology. Then, (an)n∈N ∈
∨−1

([0, r)) if, and only if, there exists

q ∈ [0, 1]∩Q such that an ≤ q < r for any n. Thus,
∨−1

([0, r)) = [0, q]ω, which
is not an open in the product euclidean topology.

On the other end, since intervals of type [0, r) are generators for BA([0, 1]) =

BO([0, 1]), for any [0, r) we have that
∨−1

([0, r)) = [0, q]ω is a Baire subset of
[0, 1]ω endowed with the product σ-algebra BA([0, 1]ω) =×ω

BA([0, 1]), see
[10, Section 38, Exercise (4)]. Consequently,

∨
is Baire measurable and it is

continuous with respect to ZIRL.

Notice that, looking at [0, 1]κ as a topological space, there are at least two
ways of endowing it the the Zariski IRL-topology:

(i) We take the product of ([0, 1],ZIRL),

(ii) We take the topology ZIRL on [0, 1]κ, that is, the topology generated by
the zerosets of Baire functions in IRL(κ).

In Lemma 3.2 we have used the topology of (ii). Nonetheless, we shall now see
that in our case they coincide. To do so, we need a preliminary lemma.

Lemma 3.3. The topology ([0, 1],ZIRL) is Hausdorff.

Proof. This is because the MV-Zariski topology on [0, 1], that is Hausdorff,
is smaller than ZIRL. Indeed, the MV-Zariski topology is generated by the
zerosets of the free one-generated MV-algebra, which is contained in IRL(1)
and therefore are among the generators of the topology ZIRL.

Proposition 3.4. The topologies on [0, 1]κ defined in items (i) and (ii) above
coincide. Whence, we shall call it product Zariski topology.
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Proof. By Lemma 3.3 and [2, Lemma 6.2] it is enough to prove that any definable
function t : [0, 1]κ → [0, 1] is continuous with respect to [0, 1]κ endowed with the
product topology of the Zariski topology (the topology of item (i) above), and
[0, 1] endowed with the Zariski topology. Notice that, in the setting of RMVσ,
definable functions are elements of IRL(κ). Whence, we prove the claim by
structural induction on the construction of the terms using half-open intervals
of [0, 1].

If t = πi is one of the projections, the claim follows from the definition of
the product topology, that makes all projections continuous.

For the negation and scalar operations, the inductive step is straightforward.
If t = p⊕ q, for every a ∈ [0, 1], we have (p⊕ q)(x) < a if, and only if, there

is a rational r < a such that p(x) < r and q(x) < a − r, thus, t−1([0, a)) =
p−1([0, r)) ∩ q−1([0, a − r)), which are both closed in the product topology by
induction hypothesis and the fact that [0, r) and [0, a − r) are Baire sets, that
is, basic closed of ([0, 1],ZIRL).

If t =
∨
n pn, we have

∨
n pn(x) < a if, and only if, there is a rational r < a

such that pn(x) ≤ r for every n. Thus, t−1([0, a)) =
⋂
n

(
p−1
n ([0, r])

)
, which is a

closed subset of [0, 1]κ by induction hypothesis and the fact that [0, r] is a Baire
subset of [0, 1].

The argument of the following proof is mostly standard, we give details for
the sake of completeness.

Lemma 3.5. For any A ∈ RMVσ, Mσ(A) and Homσ(A, [0, 1]) are home-
omorphic, with the hull-kernel topology on the former and the product Zariski
topology on the latter.

Proof. Consider the map η : Homσ(A, [0, 1]) → Mσ(A), sending h 7→ ker(h).
The map is surjective, indeed we recall that for any M ∈ Mσ(A), A/M is
a simple and σ-complete Riesz MV-algebra, and therefore it is isomorphic to
[0, 1]. Thus, h : A → A/M → [0, 1] is a σ-homomorphisms and ker(h) = M .
Injectivity is easily checked by direct computation, and it also follows from the
fact that η is the restriction and co-restriction of the analogous map defined on
the MV-reduct of A, see [21, Theorem 4.16].

Let us prove that η is a homeomorphism. Take Fa = {M ∈ Mσ(A) | a ∈
M}, which is a basic closed for the hull-kernel topology. Then

η−1(Fa) = {h ∈ Homσ(A, [0, 1]) | h(a) = 0} = π−1
a ({0}) ∩Homσ(A, [0, 1]).

Since πa : [0, 1]A → [0, 1] is continuous with respect to the product Zariski topol-
ogy on [0, 1]A and the Zariski topology on [0, 1], the set π−1

a ({0})∩Homσ(A, [0, 1])
is closed and η is continuous.

Let us prove that η is closed, or equivalently, that η−1 is continuous. Let
U =

∏
a∈A Ua be an basic closed in the product topology. Let {a1, . . . , ak} ⊆ A

the set of elements such that Ua 6= [0, 1], assume without loss of generality that
they are basic closed sets of ([0, 1],ZIRL) and let {p1, . . . pk} ⊆ IRL(1) be the
set of functions such that Uai = V(pi). Thus,

h ∈ U ⇔ h(ai) ∈ V(pi) for any i = 1, . . . , k ⇔ pi(h(ai)) = 0 for any i = 1, . . . , k.
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Since IRL(1) is the free one-generated algebra in RMVσ, it is also isomorphic
to the algebra of term functions fτ : [0, 1] → [0, 1]. Thus, if τi is the term that
corresponds to pi, we have that pi(h(a)) = h(τi(a)). Therefore,

h ∈ U ⇔ bi := τi(a) ∈ ker(h) = η(h) for any i = 1, . . . , k.

Whence, η(U) = {M ∈ Mσ(A) | M = ker(h), h ∈ U} = {M ∈ Mσ(A) |
bi ∈M, i = 1, . . . , k} =

⋂k
i=1 Fbi , which is closed in the hull-kernel topology of

Mσ(A).

Proposition 3.6. Homσ(A, [0, 1]) is closed in [0, 1]A with the product Zariski
topology.

Proof. Homσ(A, [0, 1]) is the intersection, in [0, 1]A, of the subsets

S1 = {f ∈ [0, 1]A | f(a⊕ b) = f(a)⊕ f(b)}
S2 = {f ∈ [0, 1]A | f(¬a) = 1− f(a)}
S3 = {f ∈ [0, 1]A | f(1A) = 1}

S4 =

{
f ∈ [0, 1]A | f

(∨
n

an

)
=
∨
n

f(an)

}
.

By Lemmas 3.2 and 3.3, all of these sets are closed in ([0, 1]A,ZIRL), and
therefore Homσ(A, [0, 1]) is closed.

As mentioned in Section 2.3, for any MV-algebra A the state-space S(A)
is a convex compact subset of [0, 1]A, where the topology is induced by the
topology on Hom(A, [0, 1]). The notion of convergence on states is the weak*-
convergence defined by sγ → s if sγ(a) → s(a) for any a ∈ A, see [8, Equation
(3) and Theorem 4.0.1] for the case of MV-algebras. We will prove an analogous
result on σ-states.

Proposition 3.7. The space of σ-states of A ∈ RMVσ, denoted by Sσ(A), is
a convex subset of [0, 1]A.

Proof. If s = α1s1 + · · ·+ αksk, with αi ≥ 0,
∑k
i=1 αi = 1 and si ∈ Sσ(A), the

claim follows from the distributivity of ⊕ over
∨

, the remark that the sequence
{an}n∈N is increasing, the monotonicity of states and the fact that, being a
convex combination, the partial sum + is always well defined and it coincides
with ⊕. Indeed, let {an}n∈N be an increasing sequence. We have

s

(∨
n

an

)
=α1s1

(∨
n

an

)
+ · · ·+ αksk

(∨
n

an

)
=
∨
n

(α1s1(an)) + · · ·+
∨
n

(αksk(an))

=
∨
i1∈I1

· · ·
∨
ik∈Ik

(α1s1(ai1) + . . .+ αksk(aik)) ,

10



where I1, . . . Ik are countable sets used to relabel the indexes of the sequence.
Since {an}n∈N is increasing, and since each si is monotone, each sum α1s1(ai1)+
. . .+αksk(aik) is dominated by the sum α1s1(an) + . . .+αksk(an), with n such
that an = sup{ai1 , . . . , aik}. Thus, in doing the supremum on the right side we
can replace the “mixed” terms with convex combinations evaluated on the same
element of the sequence. Therefore,

s

(∨
n

an

)
=
∨
n

(α1s1(an) + . . .+ αksk(an)) =
∨
n

s(an).

Proposition 3.8. The elements of Homσ(A, [0, 1]) are the extreme points in
the convex Sσ(A).

Proof. It follows from the fact that the elements of Hom(A, [0, 1]) are the ex-
treme points in the convex S(A). Indeed, if h ∈ Homσ(A, [0, 1]) is not extremal
in Sσ(A), there are s1, s2 ∈ Sσ(A) and α ∈ [0, 1] such that αs1 + (1− α)s2 = h.
Thus, in particular, h won’t be extremal in S(A), a contradiction.

The following proposition and lemma are of independent interest and we
record them here for future use. By additive function we mean a function that
preserves the partial sum + defined in Section 2.3.

Proposition 3.9. Let A ∈ RMVσ and let f : A → [0, 1]. Then f preserves
countable partial sums if, and only if, f is an additive σ-function.

Proof. Suppose f is additive and preserves increasing countable suprema. Let∑
n an be a countable sum in A. Then

∑
n an = supn(a1 + . . . + an) and the

supremum is increasing. So

f

(∑
n

an

)
= f(sup

n
(a1 + . . .+ an)) = sup

n
f(a1 + . . .+ an),

and since f is additive we have

sup
n
f(a1 + . . .+ an) = sup

n
(f(a1) + . . .+ f(an)) =

∑
n

f(an).

By putting together the last two equations, we have that f preserves count-
able sums.

Conversely, suppose f preserves countable sums. First, f is additive and
monotone. Indeed, for any a, b ∈ A such that b ≤ a, we can write a = b⊕ (a	 b)
and b � (a 	 b) = 0. Whence, in [0, 1], f(a) = f(b) + f(a 	 b). Moreover,
f(a	 b) = f(a)− f(b).

Let supn an be a countable increasing supremum. Then, we can write an =
a1 ⊕

∑n−1
i=1 (ai+1 	 ai) and therefore f(an) = f(a1) +

∑n−1
i=1 (f(ai+1)− f(ai)).

11



Consequently, by taking the supremum over n,

sup
n
an = a1 ⊕

∑
i∈ω

(ai+1 	 ai) and

sup
n
f(an) = f(a1) +

∑
i∈ω

(f(ai+1)− f(ai)) ,

hence, by applying f to supn an, we have

f(sup
n
an) = f

(
a1 ⊕

∑
i∈ω

(ai+1 	 ai)

)
= f (a1) +

∑
i∈ω

f (ai+1 	 ai)

= f(a1) +
∑
i∈ω

(f(ai+1)− f(ai)) = sup
n
f(an).

Thus, f preserves increasing countable suprema.

Lemma 3.10. Let A be a σ-complete Riesz MV-algebra, let s be a state and let
{sk}k∈K be a net of σ-states in [0, 1]A. If s = supksk, then s is a σ-state.

Proof. For any increasing sequence {an}n∈N, the inequality

∨
n

s(an) ≤ s

(∨
n

an

)

follows by monotonicity.
Conversely, since sk ≤ s,

sk

(∨
n

an

)
=
∨
n

sk(an) ≤
∨
n

s(an).

Consequently, passing to the supremum over k,

s

(∨
n

an

)
≤
∨
n

s(an),

settling the claim.

We recall that a Gδ subset of [0, 1]κ is a countable intersection of open sets
and it belongs to BO([0, 1]κ) = BA([0, 1]κ) for κ ≤ ω. Notice that here [0, 1]κ

needs to be endowed with the standard Euclidean topology, which is the one
used to define Baire and Borel subsets.

Proposition 3.11. Let κ ≤ ω, let V ⊆ [0, 1]κ be a Gδ subset with respect to
the Euclidean topology. Any state s : IRL(κ)|V→ [0, 1] is a σ-state.
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Proof. By Mundici’s equivalence and [21, Proposition 10.3], any s ∈ S(IRL(κ))
extends to a positive liner functional t : Baire(V ) → R, where Baire(V ) is the
Banach lattice of bounded Baire-measurable functions in RV . Such a V is a
Polish space (separable, completely metrizable space) since the cube [0, 1]κ is
a Polish space itself and Gδ subsets of Polish spaces are Polish by Alexandrov
Theorem, see [14, Chapter 3, Section 33, Subsection VI]. Consequently, by [9,
Example 3.10(e)], Baire(V ) has the σ-order continuity property. This property
implies that for any decreasing sequence {an}n∈N in Baire(V ), if an ↓ a then
t(an) ↓ t(a). From the latter, it is easily deduced that s is a σ-state.

As mentioned in the proof of Proposition 3.11, any V that satisfies the
hypothesis is a Polish space, that is, a separable, completely metrizable space.
Conversely, it is known that any Polish space is homeomorphic to a Gδ subset
of the Hilbert cube. These spaces are of among the most used in probability
theory, making the previous proposition quite relevant for our research project.

Thus, let us describe the state-space of σ-semisimple algebras “presented”
by Gδ subsets of hypercubes.

Proposition 3.12. Let V ⊆ [0, 1]κ a Gδ subset, with κ ≤ ω, and take A '
IRL(κ)|V . Then S(A) = Sσ(A) and it is a closed subset of ([0, 1]A,ZIRL).

Proof. The first part of the claim was proved in Proposition 3.11. To see that
Sσ(A) is closed we prove that the limit of any convergent net of states is a state.
Whence, let s = limγ sγ , sγ ∈ Sσ(A) for any index γ. Using Lemma 3.2, it is
easy to see that s(a + b) = s(a) + s(b) and s(1A) = 1, using the definition of
convergence, the fact that each sγ is a state, and the fact that for any a ∈ A,
(sγ(a))γ∈Γ is a net in ([0, 1],ZIRL).

We end this section with some comments. We have seen, following Lem-
mas 3.1 and 3.5 that the space Homσ(IRL(κ), [0, 1]) is not always compact.
Consequently, we can’t directly infer that Sσ(A) is a compact convex subset of
[0, 1]A, as it happens without the countable operation. Nevertheless, we proved
that Sσ(A) is closed and convex on certain σ-semisimple algebras. As a deeper
topological analysis of the space of σ-states goes beyond the scope of this paper,
we leave the analysis of its compacteness as an open problem.

4. Dutch-book arguments in RMVσ

In [8, Section 5] one can find a detailed account of the recent literature on
de Finetti’s coherence criterion for many-valued events. The survay includes
the work [20] in which F. Montagna extends Mundici’s version of de Finetti
coherence criterion, adding the possibility to consider conditional events.

We note that, in order to discuss conditioning, one has the need to consider
MV-algebras enriched by real constants and a ring-like product. Indeed, Mon-
tagna formally defines coherence using the evaluation of the conditioning event
as a scaling factor in the setting of PMV-algebras.
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As remarked in Section 2.3, Riesz tribes carry a natural structure of PMV-
algebra and they contain all constant functions. Whence, given these consider-
ations, de Finetti’s coherence criterion translates in our setting as follows.

Definition 4.1. A conditional event in a σ-semisimple algebra A is a pair
(p, q) ∈ A×A. Given a finite set

E = {(p1, q1), . . . , (pn, qn), r1, . . . , rm}

where all pi, qi, rj belong to A for any i = 1, . . . , n and j = 1, . . . ,m, a condi-
tional book on the conditional and unconditional events of E is the assignment

β : (p1, q1) 7→ α1, . . . , (pn, qn) 7→ αn, r1 7→ c1, . . . , rm 7→ cm (CB)

where αi, cj ∈ [0, 1] for all indexes.
A book is said complete if for any qi there exists a unique index j such that

qi = rj , that is {q1, . . . qn} ⊆ {r1, . . . , rm} with no repetitions. In this case, we
shall always assume that the events are ordered in such a way that qi = ri for
any i = 1, . . . , n. A complete book is said positive if ci > 0 for any i = 1, . . . , n.

In this section κ is always assumed to be countable.

Definition 4.2. Let A ' IRL(κ)|V be a σ-semisimple algebra. The book β is
conditionally coherent if, and only if, for any σ1, . . . , σn ∈ R and δ1, . . . , δm ∈ R
there exists x ∈ V such that

n∑
t=1

σtqt(x)(αt − pt(x)) +

m∑
j=1

δj(cj − rj(x)) ≥ 0 (CC)

If E = {r1, . . . , rm}, that is, there are no conditional events, the book will
be also called unconditional and, eventually, coherent instead of conditionally
coherent.

Note that each pi can be regarded as a formula ϕi in the logic IRL in
which only a finite number of propositional variables occur. Moreover, pi(x)
can be regarded as the evaluation of the formula ϕi induced by the assignment
of Lemma 3.1. Obviously, the same remarks hold true for each qi and each rj .

Moreover, when A ' IRL(κ)|V , for any h ∈ Homσ(A, [0, 1]) there exists a
unique x ∈ V such that h(ai) = ai(x), exactly as sketched in Lemma 3.1. Here
we remark that {πi|V }i∈κ is again a set of generators for IRL(κ)|V .

Therefore, Definition 4.2 can be generalized to the following version of de
Finetti’s coherence.

Definition 4.3. Let A ∈ RMVσ and E = {(a1, b1), . . . , (an, bn), d1, . . . , dm}.
The book β is conditionally coherent if, and only if, for any σ1, . . . , σn ∈ R and
δ1, . . . , δm ∈ R there exists h ∈ Homσ(A, [0, 1]) such that

n∑
t=1

σth(bt)(αt − h(at)) +

m∑
j=1

δj(cj − h(dj)) ≥ 0.
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Definition 4.3 makes more clear the fact that in this setting we need an ap-
proach to coherence that is different from the one usually given in the setting of
MV-algebras: the space Homσ(A, [0, 1]) might not be compact, as always hap-
pens with Hom(A, [0, 1]), and compacteness is crucial for applying the results of
[15]. Whence, in our infinitary setting, we shall give a proof that is inspired by
the relation between the Hahn-Banach theorem and de Finetti coherence that
can be found in [22]. To ease our way in the proof, we shall first consider the
case of an unconditional book.

We recall that a sublinear functional between Riesz spaces is a map p : L→
M such that p(f + g) ≤ p(f) + p(g) for all f, g ∈ L and p(af) = ap(f) for all
real numbers a ≥ 0. We also urge the reader to consult [25, Theorem 83.13] for
the version of the Hahn-Banach theorem most suited to our framework.

Theorem 4.4. For any Gδ subset V of [0, 1]κ, let E = {p1, . . . , pn} ⊆ IRL(κ)|V
be a finite subset of events. Consider an assignment β : E → [0, 1]. Then the
following are equivalent:

(i) β is coherent,

(ii) β can be extended to a σ-state on IRL(κ)|V .

Proof. Let Baire(V ) ⊆ RV denote the set of all bounded Baire functions re-
stricted to V . We have that IRL(κ)|V = Γ(Baire(V ),1) and E ⊆ Baire(V ).

(i) ⇒ (ii) The coherence of β implies that for any σ1, . . . σn ∈ R,

sup
x∈V

(
n∑
i=1

σi(β(pi)− pi(x))

)
≥ 0

Take qi := β(pi) − pi and let E′ ⊆ Baire(V ) be the linear space generated by
q1, . . . , qn. The supremum is a sublinear functional on Baire(V ) and for any
g ∈ E′, 0 ≤ supx∈V g(x). Thus, there exists a liner functional t : Baire(V )→ R
that extends the zero functional 0 and it is bounded by the supremum functional.
Moreover, such a t preserves constant functions and it is positive, indeed we have

sup
x∈V

(g(x)) ≥ t(g) = −t(−g) ≥ − sup
x∈V

(−g(x)) = inf
x∈V

(g(x)).

Thus, the restriction s : IRL(κ)|V→ [0, 1] is a state of the Riesz MV-algebra
IRL(κ)|V and t(qi) = 0 implies that t(pi) = s(pi) = β(pi). Finally, by Proposi-
tion 3.11, s is a σ-state.

(ii) ⇒ (i) Assume that β can be extended to a σ-state s, and let µs :
BA(V ) → [0, 1] be the unique σ-additive measure associated to s via the
Butniaru-Klement integral representation. Note that each pi ∈ E is µs-integrable.
Let g ∈ Baire(V ) denote an arbitrary payoff function g =

∑n
i=1 σi(β(pi) − pi).

Then g is µs-integrable and, since s(pi) =
∫
V
pidµs,∫

V

gdµs =

n∑
i=1

σi

(
β(pi)−

∫
V

pidµs

)
= 0 (1)
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By way of contradiction, if β is incoherent there exists a payoff function g such
that g(x) < 0 for any x ∈ V , which would imply that

∫
V
gdµs < 0 (since

µs(V ) > 0) contradicting (1). Whence, for any possible choice of σ1, . . . , σn,
there must be x ∈ V such that g(x) ≥ 0 and β is coherent.

Note that, in fact, Theorem 4.4 is a coherence criterion for those σ-semisimple
Riesz MV-algebras that are “presented” by Polish spaces. Furthermore, we have
obtained a countably-additive version of the criterion for a finite set of events.
In the setting of Boolean algebras, the case of countable additive measures has
been dealt using countable sequences of events.

We now tackle the case of conditional books. We first prove that, for pos-
itive complete books, we can rephrase the events and remove the conditioning
altogether.

Proposition 4.5. Let κ ≤ ω and let V ⊆ [0, 1]κ be a Gδ subset. With the same
notations of Definition 4.2, the complete and positive book

β : (p1, q1) 7→ α1, . . . , (pn, qn) 7→ αn, r1 7→ c1, . . . , rm 7→ cm

is conditionally coherent if, and only if, the unconditional book

βc : (d1p1 · q1) 7→ α1

M
, . . . , (dnpn · qn) 7→ αn

M
, r1 7→ c1, . . . , rm 7→ cm

is coherent, where M = max
{

1
c1
, . . . , 1

cn

}
and di = 1

Mci
for any i = 1, . . . , n.

Furthermore, β is conditionally coherent if, and only if, there exists a σ-state
s on A ' IRL(κ)|V such that s(pi · qi) = αis(qi) and s(rj) = cj, for the obvious
choices of the indexes.

Proof. The proof follows from [20, Lemma 3.6 and Theorem 3.7] mutati mu-
tandis. Indeed it is a matter of computation for which the main point is to
choose wisely the coefficients σi’s and δj ’s, but the exact same positions used
in [8, 20] work here as well. The hypothesis on V are needed in order to apply
Theorem 4.4 to βc in the second part of the claim.

More complicated is the case of complete books in which some of the ci’s, for
i = 1, . . . , n, is zero. In this case, we cannot adapt the proof of [20, Lemma 3.8]
because we don’t have the same characterization of the state-space. Nonetheless,
the measurability of our algebras gives an alternative proof.

Assume we have ordered a book β, in a way such that ct > 0 for any
t = 1, . . . , i, while ct = 0 for all t ∈ {i+ 1, . . . , n}. Let βi denote the restriction

βi : (p1, q1) 7→ α1, . . . , (pi, qi) 7→ αi, r1 7→ c1, . . . , rm 7→ cm.

Lemma 4.6. Let κ ≤ ω and let V ⊆ [0, 1]κ be a Gδ subset. With the above
notations,
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1. β is conditionally coherent if, and only if, βi is conditionally coherent.

2. There exists a σ-state s on A ' IRL(κ)|V such that for any t = 1, . . . , n
and j = 1, . . . ,m s(pt · qt) = αts(qt) and s(rj) = cj, if, and only if, there
exists a σ-state s on A ' IRL(κ)|V such that for any t = 1, . . . , i and
j = 1, . . . ,m s(pt · qt) = αts(qt) and s(rj) = cj.

Proof. 1. Trivially, if β is conditionally coherent, so is βi. For the nontrivial
direction, let σ1, . . . , σn and δ1, . . . , δm be stakes on the events in β, with the
obvious choice of indexes.

Since βi is conditionally coherent and ct > 0 for all t = 1, . . . , i, by Propo-
sition 4.5 there exists a state s on IRL(κ)|V such that s(pt · qt) = αts(qt)
for t = 1, . . . , i and s(rj) = cj for j = 1, . . . ,m. In particular, for any
l = i + 1, . . . , n, s(rl) = s(bl) = cl = 0. Furthermore, by monotonicity of
the state, s(pl · ql) ≤ s(ql) = cl = 0 as well.

A generic payoff function P (x) for β can be written as

i∑
t=1

σtqt(x)(αt − pt(x)) +

n∑
t=i+1

σtqt(x)(αt − pt(x)) +

m∑
j=1

δj(cj − rj(x)).

Such a generic P is an integrable function with respect to µs, since it
is a bounded polynomial combination of (V,BA(V ), µs)-measurable functions.
Therefore, we have the following:∫

V

Pdµs =

∫
V

i∑
t=1

σtqt(αt − pt)dµs +

∫
V

n∑
t=i+1

σtqt(αt − pt)dµs

+

∫
V

m∑
j=1

δj(cj − rj)dµs

=

i∑
t=1

σt

(
αt

∫
V

qtdµs −
∫
V

qt · ptdµs
)

+

n∑
t=i+1

σt

(
αt

∫
V

qtdµs −
∫
V

qt · ptdµs
)

+

m∑
j=1

δj

(
cj −

∫
V

rjdµs

)

=

i∑
t=1

σt (αts(qt)− s(pt · qt)) +

n∑
t=i+1

σt (αts(qt)− s(pt · qt))

+

m∑
j=1

δj (cj − s(rj)) = 0

Note that the first and third sums are zero because αts(qt) = s(pt · qt) for
t = 1, . . . , i and cj = s(rj) for j = 1, . . . ,m. The second sum is zero because for
t = i+ 1, . . . , n, we have s(qt) = s(qt · pt) = 0.

Consequently there must exist x ∈ V such that P (x) ≥ 0. Indeed, if P <
0 then the integral would be strictly negative as well (since µs(V ) > 0), a
contradiction. Thus, β is conditionally coherent.
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2. It is the same as [20, Lemma 3.8(2)]. From left-to-right, the state s
(that “extends” β) restricted to βi satisfies the claim for βi as well. Conversely,
assume that there exists a state s on IRL(κ)|V such that s(pt · qt) = αts(qt)
for t = 1, . . . , i and s(rj) = cj for j = 1, . . . ,m. Whence, as in item 1, for any
l = i + 1, . . . , n, s(ql) = 0 = s(pl · ql). Thus, the equation αls(ql) = s(pl · ql) is
trivially satisfied for all l = i+ 1, . . . , n as well, settling the claim.

Finally, putting together Proposition 4.5 and Lemma 4.6, we have the fol-
lowing theorem.

Theorem 4.7. The complete book

β : (p1, q1) 7→ α1, . . . , (pn, qn) 7→ αn, r1 7→ c1, . . . , rm 7→ cm

is conditionally coherent if, and only if, there exists a σ-state s on A ' IRL(κ)|V
such that s(pi · qi) = αis(qi) and s(rj) = cj, for the obvious choices of the
indexes.

We note that in the survey paper [8], Lemma 7.1.2 and Theorem 7.1.3,
one can find a slightly different approach to the case of complete and positive
books. In particular, positive books are defined in a slightly different way,
making computation a bit more straightforward. Nonetheless, the main result
– that is, Theorem 4.7 – will remain the same.

4.1. An application to logico-algebraic models

In what follows, k ≤ ω is a countable cardinal and CE will denote the set of
all coherent books with respect to E. In [16] the authors have defined logico-
algebraic statistical models as functions η = (ηi)i∈κ : P → ∆κ, where P ⊆ [0, 1]d

is an intersection of Baire sets and ∆κ is the standard κ-dimensional simplex.
This definition was inspired by the theory of algebraic statistics, whose main

reference is [23]. Our dictionary, that translates notions of statistics in logical
terms, is the following:

� [0, 1]n is the set of observations on the real world, while IRL(n) is the set
of events;

� the IRL-algebraic variety P ⊆ [0, 1]d is the set of states of the world, or
parameters. We assume that P = V(q) is a Baire subset of [0, 1]d;

� η = (ηi)i∈κ : P → [0, 1]k is our statistical model: to each parameter x ∈ P
it associates the tuple (ηi(x))i∈κ.

Thus, we define a coherent model by using de Finetti’s coherence.

Definition 4.8. If n, d, k ∈ N, a statistical model η : P ⊆ [0, 1]d → [0, 1]k is
coherent with respect to the events E = {p1, . . . , pk} ⊆ IRL(n) if η(P ) ⊆ CE .
The elements of E therefore represent the possible events that might occur.

Notice that, in this definition, the model η = (η1, . . . , ηk) is always coherent
w.r.t. the events {η1, . . . , ηk}.
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Lemma 4.9. If n, d, k ∈ N, a statistical model η : P ⊆ [0, 1]d → [0, 1]k is
coherent with respect to the events E = {p1, . . . , pk} ⊆ IRL(n) if, and only
if, for any x ∈ P there exists a state s : IRL(n) → [0, 1] such that such that
s(pi) = ηi(x) for any i = 1, . . . , k.

Proof. It follows from the definition of a coherent model and Theorem 4.4.

Thus, when a model is coherent with respect to some set E, each point of its
image can be extended to a state on IRL(n). We note that Lemma 4.9 provides
a justification for this logico-algebraic definition of a statistical model. Indeed,
classically, statistical models are often taken to be set of probability measures.

Example 4.10. Let k ∈ N and let us consider a binomial model, which is alge-
braically described as the function:

ηi : [0, 1]→ [0, 1] ηi(x) =

(
k

i

)
xi(1− x)k−i.

Let η : [0, 1] → [0, 1]k+1 be defined as η = (η0, . . . , ηk). Here the integer k
represents the iterations of an experiment, and for a fixed x ∈ [0, 1], ηi(x) is the
probability of having i successes and k− i failures, given that the probability of
success in one single trial is x.

Since
∑k
i=0 ηi(x) = 1, such a model is always coherent with respect to any

set {p1, . . . , pk} that satisfies the following conditions:
(1)

⊕
i6=j pi = ¬pj

(2) for any i, there exists x ∈ [0, 1] such that pi(x) = 1.
This is a consequence of [13, Theorem 7] and Lemma 4.9, since in this case
the assignment pi 7→ ηi(x) gives a partial state for any x ∈ [0, 1], which can be
extended to a σ-state on the whole algebra. The functions that satisfy conditions
(1) and (2) above are called a normal partition of the unit.

5. Moment problem and exchangeability

We take inspiration from [7, Chapter VII] to give a version of the Hausdorff
moment problem in the setting for σ-semisimple σ-complete Riesz MV-algebras.
We will then use it to give a characterization of exchangeability for special
sequences of observables. We refer to [16] for the missing notions on sequences
of exchangeable observables.

In [17] the moment problem was proved for MV-algebras of continuous func-
tions closed under product. We now tackle the case of measurable functions
using Riesz tribes. The proof strategy of Theorem 5.1 is based on the one given
in [17], the proof given by Feller in [7] and its reformulation in [18].

Let {mk}k∈N be a sequence of real numbers, the Moment Problem on I ⊆ R
consists on finding out the conditions on {mk}k∈N for which there exists a
probability measure µ on I such that mk is the kth moment of µ, that is,
mk =

∫
I
xkdµ.
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If {mk}k∈N is a sequence of real numbers in [0, 1], we define the following,
for any r > 0, k ≥ 0

∆0mk = mk, ∆rmk = ∆r−1mk+1 −∆r−1mk.

The sequence {mk}k∈N satisfies the Hausdorff moment condition if

m0 = 1 and (−1)r∆rmk ≥ 0 for any r, k ≥ 0. (HMC)

In the following, for any k ≥ 1 we denote by pk the base polynomial xk.
Thus, pk can be also thought as a function in [0, 1][0,1]. Furthermore, we set
p0(x) = 1 for any x ∈ [0, 1]. We also remark that by Proposition 3.11, if V is a
Gδ subset of [0, 1], any state on IRL(1)|V is a σ-state.

Theorem 5.1. Let V be a Gδ subset of [0, 1] and take A ' IRL(1)|V . There
exists a σ-state s : A→ [0, 1] such that s(pk) = mk if, and only, if the sequence
{mk}k∈N satisfies the Hausdorff moment condition.

Proof. Let s be a σ-state such that s(pk) = mk. By Theorem 2.2,

mk = s(pk) =

∫
V

pkdµs,

for any k ∈ N, where µs is a probability measure on (V,BA(V )). Then m0 =
s(1) = 1.

Following the computations in [7, Chapter VII, Equation (1.7)] we can write

(−1)r∆rmk =

r∑
h=0

(
r

h

)
(−1)hmk+h.

Thus,

(−1)r∆rmk =

r∑
h=0

(−1)h
(
r

h

)∫
V

pk+hdµs =

∫
V

[
xk

r∑
h=0

(
r

h

)
(−1)hxh

]
dµs

=

∫
V

pk(1− p1)rdµs = s(pk(1− p1)r) ≥ 0,

therefore the Hausdorff moment condition is satisfied.
To prove the converse direction, let P ([0, 1]) be the set of all polynomials

p : [0, 1] → R. Thus, p =
∑n
i=1 aipi for suitable scalars a1, . . . , an ∈ R. Note

that P (V ) = {p|V | p ∈ P ([0, 1])} is a linear subspace of the Riesz space Baire(V )
of restrictions to V of all bounded Baire-measurable functions in R[0,1].

Let t : P ([0, 1]) → R be the linear functional defined by t (
∑n
i=1 aipi) =∑n

i=1 aimi. Thus, since m0 = 1, t(c) = c for any constant c ∈ R.
We now prove that t is a positive functional. This can be done exactly as in

[18, Theorem 1]. We sketch the idea (which is in itself already contained in [7])
for its applicability to more general settings. We shall use Bernstein polynomial,
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see [7, Chapter VII.2], that are universal approximators for continuous functions.
In particular, for any p ∈ P ([0, 1]), its Bernstein polynomial of degree n is

Bp,n(x) =

n∑
r=1

(
n

r

)
p
( r
n

)
xr(1− x)n−r

=

n∑
r=1

(
n

r

)
p
( r
n

) n−r∑
j=0

(
n− r
j

)
(−1)jpr+j .

Thus, applying t to Bp,n we get

t (Bp,n) =

n∑
r=1

(
n

r

)
p
( r
n

) n−r∑
j=0

(
n− r
j

)
(−1)jmr+j .

As seen before,
∑n−r
j=0

(
n−r
j

)
(−1)jmr+j = (−1)n−r∆n−rmr, which is greater

of equal to 0 by hypothesis. Consequently, t (Bp,n) ≥ 0 for any n ∈ N and
any positive p ∈ P ([0, 1]). By [7, Chapter VII.2, Theorem 1], Bn,p converges
uniformely (and therefore, also pointwisely) to p and by [18, Lemma 2], t(p) =
limn→+∞ t(Bn,p) ≥ 0.

Now, since V ⊆ [0, 1], any p ∈ P (V ) is bounded and t(p) = t(p−infx∈V (p(x)))+
infx∈V (p(x)). Since p− infx∈V (p(x)) ≥ 0, t(p) ≥ infx∈V (p(x)). Furthermore,

t(p) = −t(−p) ≤ − inf
x∈V

(−p(x)) = sup
x∈V

p(x)

We have proved that t is a linear functional bounded by the supremum sublinear
functional on P (V ). Hence, by the Hahn-Banach theorem, there exists t :
Baire(V )→ R that extends t and it is bounded by the supremum on the whole
Baire(V ). Furthermore, t is still positive and t(1) = t(1) = 1.

Denoted by s : IRL(1)|V→ [0, 1] the restriction of t to A, we obtain the
desired σ-state.

We now see how to apply the moment problem to sequences of observables.
Assume again that V is a Gδ subset of [0, 1] and let {Xn}n∈N be a sequence

of one-dimensional observables posed in the tribe IRL(1)|V . That is, for any
n ∈ N, Xn : IRL(1)→ (IRL(1)|V , s).

Assume also that the process is induced by {0, 1}-valued measurable func-
tions, that is Xn(a) = a ◦ fn with fn boolean element of IRL(1)|V . We can
also assume that fn = χEn

with En ∈ BA(V ). We call such process a boolean
process of observables.

Before giving the main result of this section, let us provide an example of a
boolean process. Consider ([0, 1],BO[0, 1]), µ), where µ is the Lebesgue measure,
and let fn : [0, 1] → {0, 1} be the function that maps x in the n-th digit of its
binary expansion. It is known, see for example [12, Lemma 3.20], that each fn is
a Bernoulli random variable with success rate 1/2 and that the process {fn}n∈N
is exchangeable. Thus, we might think of Xn(a) = a ◦ fn as the probability of
success of an the experiment in which there are fuzzy aspects that need to be
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taken care of. For example, a could be a step function modeling the efficiency
of a tool needed to perform the experiment.

Proposition 5.2. With the above notations, the boolean process of observables
{Xn}n∈N is weakly exchangeable if, and only if, for any n ∈ N and any k =
1, . . . , n, there exists a state t : IRL(1)|V→ [0, 1] such that, for any set of
indexes, i1, . . . , ik, ik+1, . . . , in

s(χCn
k

) = t(pn(1− p1)n−k), (2)

where Cnk = Ei1 ∩ . . . ∩ Eik ∩ (V \ Eik+1
) ∩ . . . ∩ (V \ Ein).

Proof. Assume that Equation (2) holds. By definition, see Section 2.3, the
process is weakly exchangeable if for each n ∈ N, and indexes i1, . . . , in and
j1, . . . , jn the joint distributions of the finite subsets fi1 , . . . , fin and fj1 , . . . , fjn
coincide. Note that such a joint distribution is given by

µs (fi1 = a1, . . . , fin = an) = µs ({x ∈ V | fi1(x) = a1, . . . , fin(x) = an}) ,

with a1, . . . , an ∈ {0, 1}. Thus, we need to prove that µs (fi1 = a1, . . . , fin = an) =
µs (fj1 = a1, . . . , fjn = an).

Assume that among the ai’s there are k ones and n− k zeros and let Fnk =
Fi1 ∩ . . .∩Fin , where Fih = Eih if ah = 1 and Fih = V \Eih if ah = 0. Similarly,
let Gnk = Gj1 ∩ . . . ∩ Gjn , where Gjh = Ejh if ah = 1 and Gjh = V \ Ejh if
ah = 0.

Then, by hypothesis, since each fn = χEn
,

µs (fi1 = a1, . . . , fin = an) = µs(F
n
k ) = s(χFn

k
) = t(pn(1− p1)n−k).

Analogously,

µs (fj1 = a1, . . . , fjn = an) = s(χGn
k
) = t(pn(1− p1)n−k),

and the claim is settled.
Conversely, by exchangeability of the sequence {fn}n∈N, the measure of any

subset of type Cnk only depends on n and k. Therefore, let µk,n be µs(C
n
k ),

where 0 ≤ k ≤ n.
We will denote c0 = 1 and cn = µn,n for any n ∈ N. By the probability laws

of marginations and the hypothesis of exchangeability, we have

µn−1,n = µn−1,n−1 − µn,n = −∆cn−1,

µn−2,n = µn−2,n−1 − µn−1,n = ∆2cn−2,

and further µk,n = µk,n−1 − µk+1,n = (−1)n−k∆n−kck.

Since µk,n are the values of a probability measure, they are non-negative and
(−1)n−k∆n−kck ≥ 0 for any 0 ≤ k ≤ n. We can therefore apply Theorem 5.1.
Hence, there exists a σ-state on IRL(1)|V such that ck = t(pk).
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We remark that (−1)r∆rck =
∑r
h=0

(
r
h

)
(−1)hck+h, where r = n− k. Then

s(χCn
k

) =µs(C
n
k ) = (−1)r∆rck =

r∑
h=0

(−1)h
(
r

h

)∫
V

xk+hdµt

=

∫
V

[
xk

r∑
h=0

(
r

h

)
(−1)hxh

]
dµt =

∫
V

xk(1− x)rdµt

=t(pn(1− p1)n−k).

We have proved that s(χCn
k

) = t(pn(1 − p1)n−k) and the existence of t only
depends on n and k. Therefore, the claim is settled.

As mentioned in the introduction, this work is part of a larger project,
whose broad goal is to give a logic-based approach to statistics. To achieve this
goal, and to provide some effective reasoning mechanisms, more work is needed.
In particular, future work will focus on expanding the discussion started in
Section 4.1, where is given a first approach to coherence of an algebraic statistical
model using de Finetti’s characterization.
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